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Abstract
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OHuman mantle cell lymphoma (MCL), an aggressive B cell non-Hodgkin’s lymphoma, is characterized by the overexpression of cyclin

D1 which plays an essential role in the survival and proliferation of MCL. Because of MCL’s resistance to current chemotherapy, novel

approaches are needed. Since MCL cells are known to overexpress NF-kB regulated gene products (including cyclin D1), we used

curcumin, a pharmacologically safe agent, to target NF-kB in a variety of MCL cell lines. All four MCL cell lines examined had

overexpression of cyclin D1, constitutive active NF-kB and IkB kinase and phosphorylated forms of IkBa and p65. This correlated with

expression of TNF, IkBa, Bcl-2, Bcl-xl, COX2 and IL-6, all regulated by NF-kB. On treatment of cells with curcumin, however,

downregulated constitutive active NF-kB and inhibited the consitutively active IkBa kinase (IKK), and phosphorylation of IkBa and p65.

Curcumin also inhibited constitutive activation of Akt, needed for IKK activation. Consequently, the expression of all NF-kB-regulated

gene products, were downregulated by the polyphenol leading to the suppression of proliferation, cell cycle arrest at the G1/S phase of the

cell cycle and induction of apoptosis as indicated by caspase activation, PARP cleavage, and annexin V staining. That NF-kB activation is

directly linked to the proliferation of cells, is also indicated by the observation that peptide derived from the IKK/NEMO-binding domain

and p65 suppressed the constitutive active NF-kB complex and inhibited the proliferation of MCL cells. Constitutive NF-kB activation

was found to be due to TNF, as anti-TNF antibodies inhibited both NF-kB activation and proliferation of cells. Overall, our results indicate

that curcumin inhibits the constitutive NF-kB and IKK leading to suppression of expression of NF-kB-regulated gene products that results

in the suppression of proliferation, cell cycle arrest, and induction of apoptosis in MCL.

# 2005 Elsevier Inc. All rights reserved.
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Abbreviations: EMSA, electrophoretic mobility shift assay; IKK, IkB

kinase; FBS, fetal bovine serum; IkBa, inhibitory subunit of NF-kB; MCL,

mantle cell lymphoma; NF-kB, nuclear transcription factor-kB; NEMO,

NF-kB essential modifier; NBD, NEMO-binding domain peptide; PI,

propidium iodide; PIS, pre-immune serum; HRP, horse radish peroxidase;

MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide;

PMSF, phenylmethylsulfonyl fluoride; EBV, Epstein-Barr virus; PTD,

protein transduction domain
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1. Introduction

Mantle cell lymphoma (MCL) is a type of B cell non-

Hodgkin lymphoma (NHL) that accounts for 3–10% of all

NHL in Western countries [1] and leads to higher fraction

of deaths, given that it is an incurable malignancy [2]. MCL

patients are most often elderly men who present with

advance stage of disease, and most often with extranodal

involvement [3]. The length of survival of MCL patients

following diagnosis is quite variable with median survival

of around 3 years. Depending upon the severity, it may vary

between 1 and 10 years.

There is no clear standard approach for treating mantle

cell lymphoma. Chemotherapy with chlorambucil [4], CVP
BCP 8647 1–14
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(cyclophosphamide, vincristine, and prednisone), or CHOP

(cyclophosphamide, hydroxydoxorubicin, oncovin, and

prednisone) [5] can be used in patients who are not candi-

dates for aggressive therapy. Allogeneic transplant is pro-

mising for young patients with matched donors [6]. High-

dose therapy with autologous stem cell transplantation may

extend the time to progression and the duration of overall

survival. Other agents, including rituximab [7], fludarabine

[8], and cladribine [9] have demonstrated activity, but these

agents do not appear to offer survival advantages over

combination chemotherapy. Despite these treatment

options, this malignancy remains incurable.

MCL is characterized cytogenetically by the presence

of a non-random chromosomal abnormality, the t(11;14)

(q13;q32) chromosomal translocation, as a result of which

the cyclin D1 gene is brought under the control of the

immunoglobulin heavy chain gene enhancer, leading to

overexpression of cyclin D1 [10–12]. The latter is a hall-

mark of this disease and is believed to contribute to

deregulated cellular proliferation in MCL [2]. Addition-

ally, the anti-apoptotic protein Bcl2 is also overexpressed

in MCL [13]. Recent gene profiling studies have shown

that the genes involved in TNF and NF-kB signaling

pathways are overexpressed in MCL [14]. Both cyclin

D1 and Bcl-2 are regulated by NF-kB [15,16].

NF-kB is a transcription factor present in the cytoplasm as

an inactive heterotrimer consisting of p50, p65, and IkBa

subunits. On activation, IkBa undergoes phosphorylation

and ubiquitination-dependent degradation leading to nuclear

translocation and binding to a specific consensus sequence in

the DNAwhich results in gene transcription [17]. The kinase

which phosphorylates IkBa is termed IkB kinase (IKK)

composed of IKKa, IKKb and IKKg (also called NEMO

[18]). NF-kB regulates the expression of genes involved in

antiapoptosis (e.g. bcl-2 and bcl-xl); proliferation (COX2

and cyclin D1) and metastasis (e.g., MMP-9).

Curcumin, a diferuloylmethane derived from turmeric

(Curcuma longa) is a pharmacologically safe agent that has

been shown to suppress NF-kB activation and NF-kB gene

products [19,20]. In the current report, we targeted NF-kB

pathway in MCL cells by using curcumin. We found that

all four MCL cell lines expressed constitutively active NF-

kB and NF-kB-regulated gene products (Bcl-2, Bcl-XL,

cyclin D1, COX2, TNF, IL-6, RANK, and RANKL); and

treatment with curcumin suppressed NF-kB activation and

downregulated the expression of these gene products lead-

ing to cell cycle arrest, suppression of proliferation and

induction of apoptosis.
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2.1. Materials

The four MCL cell lines included in this study were

JeKo-1, Mino, SP-53, and Granta 519. JeKo-1 [21] was
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kindly provided by T. Akagi (Chosun University Medical

School, Kwangju, Korea). The cell line Mino was estab-

lished and characterized at The University of Texas M. D.

Anderson Cancer Center by Dr. Raymond Lai [22]. SP-53

[23] was a generous gift from M. Daibata (Kochi Medical

School, Kochi, Japan). The cell line Granta 519 was

purchased from Deutsche Sammlung von Mikroorganis-

men und Zellkulturen GmbH (DSMZ, Braunschweig,

Germany). Granta 519 was established using Epstein-Barr

virus (EBV), whereas other three cell lines were EBV-

negative.

The rabbit polyclonal antibodies to IkBa, p50, p65,

cyclin D1, Bcl-2, Bcl-xL, and PARP and the annexin V

kit were purchased from Santa Cruz Biotechnology

(Santa Cruz, CA). Antibodies against cleaved-PARP,

phospho-IkBa, procaspase-7, and procaspase-9 and the

polynucleotide kinase kit were purchased from New

England Bio Labs, Inc. (Beverly, MA). Phospho specific

Akt antibody was purchased from Cell Signaling (Bev-

erly, MA). TNF-A5 purified mouse anti-human TNFa

monoclonal antibody was purchased from BD Pharmin-

gen. Anti-IKKa and anti-IKKb antibody were kindly

provided by Imgenex (San Diego, CA). Goat anti-

rabbit-horseradish peroxidase (HRP) conjugate was

purchased from Bio-Rad Laboratories (Hercules, CA),

goat anti-mouse-HRP was purchased from Transduction

Laboratories (Lexington, KY), and goat anti-rabbit-

Alexa 594 was purchased from Molecular Probes

(Eugene, OR). Cell-permeable NEMO (NF-kB essential

modifier; also called IKKg)-binding domain (NBD)

peptide, NH2-DRQIKIWFQNRRMKWKKTALDWSW-

LQTE-CONH2, PTD-p65-P1 peptide (amino acid resi-

dues 271-282 of p65 linked with a peptide transduction

domain (PTD) derived from the third helix sequence of

antennapedia), and the control peptide NEMO-C, NH2-

DRQIKIWFQNRRMKWKK-CONH2 were kind gifts

from Imgenex (San Diego, CA). Hoechst 33342 and

MTT were purchased from Sigma-Aldrich Chemicals

(St. Louis, MO). Curcumin with a purity of greater than

98% was purchased from LKT laboratories (Minneapo-

lis, MN) and prepared as a 20 mM solution in dimethyl

sulfoxide and then further diluted in cell culture

medium. RPMI-1640, DMEM, fetal bovine serum

(FBS), 0.4% trypan blue vital stain, and antibiotic–

antimycotic mixture were obtained from Life Technolo-

gies Inc. (Grand Island, NY). Protein A/G-Sepharose

beads were obtained from Pierce (Rockford, IL),

g-P32-ATP was purchased from ICN Pharmaceuticals

(Costa Mesa, CA).

2.2. Cell culture

All the human MCL cell lines except Granta 519 were

cultured in RPMI 1640 medium containing 10% FBS and

1� antibiotic–antimycotic. Granta 519 was cultured in

DMEM supplemented with 10% FBS.
BCP 8647 1–14
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2.3. Electrophoretic mobility shift assay for NF-kB

To determine NF-kB (which has a well-established role

in inflammation, tumor proliferation, promotion, invasion

and metastasis), we carried out EMSA essentially as pre-

viously described [24].

2.4. Immunocytochemistry for NF-kB p65 localization

Curcumin-treated MCL cells were plated on a glass slide

by centrifugation using a Cytospin 4 (Thermoshendon,

Pittsburg, PA), air-dried for 1 h at room temperature,

and fixed with cold acetone. The p65 was examined by

an immunocytochemical method using an epifluorescence

microscope (Labophot-2; Nikon, Tokyo, Japan) and a

Photometrics Coolsnap CF color camera (Nikon, Lewis-

ville, TX) as described previously [25].

2.5. Western blot analysis

Thirty to fifty micrograms of cytoplasmic protein

extracts, prepared as described [24], were resolved on

10% SDS-PAGE gel. After electrophoresis, the proteins

were electrotransferred to a nitrocellulose membrane,

blocked with 5% non-fat milk, and probed with anti-

bodies against either IkBa, phospho-IkBa, Bcl-2, Bcl-

xL, p65, phosphorylated p65, COX2, MMP-9, or cyclin

D1 according to manufacturer’s protocol. Thereafter, the

blot was washed, exposed to HRP-conjugated secondary

antibodies for 1 h, and finally detected by ECL chemi-

luminescence reagents (Amersham Pharmacia Biotech,

Arlington Heights, IL). For detection of caspases and

cleavage products of PARP, whole-cell extracts were

prepared by lysing the curcumin-treated cells and

Western blot was performed as described previously

[26].

2.6. IkB kinase assay

The IkB kinase assay was performed by a modified

method as described earlier [27]. Briefly, IKK complex

was precipitated from whole-cell extracts with antibody

to IKKa and IKKb followed by treatment with 20 ml of

protein A/G-sepharose (Pierce, Rockford, IL). After 2 h,

the beads were washed with lysis buffer and then assayed

in kinase assay mixture containing 50 mM HEPES (pH

7.4), 20 mM MgCl2, 2 mM DTT, 20 mCi [g-32P] ATP,

10 mM unlabeled ATP, and 2 mg of substrate GST-IkBa

(1–54). After incubation at 30 8C for 30 min, the reaction

was terminated by boiling with 5 ml of 5� SDS sample

buffer for 5 min. Finally, the protein was resolved on 10%

polyacrylamide gel under reducing conditions, the gel

was dried, and the radioactive bands were visualized

using a PhosphorImager. To determine the total amounts

of IKKa and IKKb in each sample, 30 mg of the whole-

cell extract protein was resolved on a 7.5% acrylamide
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gel and then electrotransferred to a nitrocellulose mem-

brane. The membrane was blocked with 5% non-fat milk

protein for 1 h and then incubated with either anti-IKKa

or anti-IKKb (1:1000 dilution) for 1 h. The membrane

was then washed and treated with horseradish peroxi-

dase-conjugated secondary anti-mouse IgG antibody and

proteins were detected by chemiluminescence (Amer-

sham).

2.7. MTT assay

The antiproliferative effects of curcumin against differ-

ent MCL cell lines were determined by the MTT dye

uptake method as described earlier [28].

2.8. Thymidine incorporation assay

To determine the cell proliferation, 5000 cells in 0.1 ml

medium were cultured in triplicate in 96-well plates in the

presence or absence of anti-TNF antibody (50 ng/ml) for

indicated time points. Cells were pulsed with 0.5 mCi

(0.0185 MBq) 3H-thymidine 6 h before harvesting, and

the uptake of 3H-thymidine was monitored by means of a

Matrix-9600-counter (Packard Instruments, Downers

Grove, IL).

2.9. Flow cytometric analysis

To determine the effect of curcumin on the cell cycle,

MCL cells were treated for different times, washed, and

fixed with 70% ethanol. After incubation overnight at

�20 8C, cells were washed with PBS, and then suspended

in staining buffer (Propidium iodide, 10 mg/ml; Tween-20,

0.5%; RNase, 0.1% in PBS). The cells were analyzed using

a FACS Vantage flow cytometer that uses CellQuest

acquisition and analysis programs (Becton Dickinson,

San Jose, CA). Gating was set to exclude cell debris, cell

doublets, and cell clumps. To determine apoptosis, curcu-

min-treated cells were washed in phosphate-buffered sal-

ine, resuspended in 100 ml binding buffer containing

FITC-conjugated annexin V, and analyzed by flow cyto-

metry.

2.10. RNA analysis and RT-PCR

MCL cells were left untreated or treated with 50 mM

curcumin for various times, washed, and suspended in

Trizol reagent. Total RNA was extracted according to

the manufacturer’s instructions (Invitrogen, Life Technol-

ogies, Grand Island, NY). Two micrograms of total RNA

was converted to cDNA by Superscript reverse transcrip-

tase and then amplified by Platinum Taq polymerase using

Superscript One Step RT-PCR kit (Invitrogen). The relative

expression of TNF, IL-6, RANK and RANKL was ana-

lyzed using quantitative RT-PCR with b-actin as an inter-

nal control.
BCP 8647 1–14
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The RT-PCR reaction mixture contained 25 ml of 2�
reaction buffer, 2 mg of total RNA and 0.2 mM each of

sense and anti-sense primers and 2 units of RT-Platinum

Taq in a final volume of 50 ml. The primer sequences for

TNF were sense: 50ACAAGCCTGTAGCCCATGTT 30;
anti-sense: 50AAAGATGACCTGCCCAGACT 30; IL-6,

sense: 50GTCTCCTCATTGAATCCAGATTGG30; anti-

sense: 50AGCTCAGCTATGAACTCCTTCTC30; RANK,

sense: 50 GGGAAAGCACTCACAGCTAATTTG 30; anti-

sense: 50 CAGCTTTCTGAACCCACTGTG 30; and RAN-

KL, sense: 50 CGTTGGATCACAGCACATCAG 30; anti-

sense: 50 AGTATGTTGCATCCTGATCCG 30. For b-actin

the primer sequences were as follows: sense 50GGGTC-

AGAAGGATTCCTATG30 and anti-sense 50 GGTCTC-

AAACAT GATCTGGG 30. The reaction was performed

at 50 8C for 30 min, 94 8C for 2 min, 94 8C for 35 cycles of

15 s each, 60 8C for 30 s, and 72 8C for 1 min with extension

at 72 8C for 10 min. PCR products were run on 2% agarose

gel and then stained with ethidium bromide. Stained bands

were visualized under UV light and photographed.

2.11. Live and dead assay

To measure apoptosis, we used the Live and Dead assay

(Molecular Probes), which determines intracellular ester-

ase activity and plasma membrane integrity. This assay

employs calcein, a polyanionic dye, which is retained

within the live cells and provides green fluorescence. It

also employs the ethidium monomer dye (red fluores-

cence), which can enter the cells only through damaged

membranes and bind to nucleic acids but is excluded by

the intact plasma membrane of live cells. Briefly,

1 � 105 cells are incubated with 150 mM each of p65 free

peptide, only antennapedia domain or p65 inhibitory

peptide for 12 h at 37 8C. Cells were stained with the Live

and Dead reagent (5 mM ethidium homodimer, 5 mM

calcein-AM) and then incubated at 37 8C for 30 min. Cells

were analyzed under a fluorescence microscope (Labo-

phot-2).
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3. Results

The aim of this study was to investigate the effect of

curcumin on the proliferation and survival of MCL.

Curcumin was selected because it is a pharmacologically

safe agent that has been shown to downregulate cyclin D1

expression (for references see [20]). Four MCL cell lines

that have been previously characterized by us were used in

the present study [29]. As the MCL cells are characterized

by overexpression of cyclin D1, so we also examined the

expression of cyclin D1 in MCL cells. All four MCL cell

lines showed constitutive expression of cyclin D1 protein

(Fig. 1A). The time and dose of curcumin used to down-

regulate NF-kB had no effect on the viability of these

cells.
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3.1. MCL cell lines express constitutive active NF-kB

We first examined the level of NF-kB in all the four

MCL cell lines. EMSA indicated that all the four cell lines

examined expressed constitutively active NF-kB. In com-

parison, chronic myeloid leukemia (KBM-5) cells showed

NF-kB only upon TNF treatment and multiple myeloma

(U266) cells, like MCL, had constitutively active NF-kB

(Fig. 1B). The level of NF-kB expression was lowest in

Granta 519 cells. Since various combinations of Rel/NF-

kB protein can constitute an active NF-kB heterodimer that

binds to a specific sequence in DNA [30], we incubated

nuclear extracts from MCL cells with antibody to either the

p50 (NF-kB1) or the p65 (RelA) subunit of NF-kB. Both

shifted the band to a higher molecular mass (Fig. 1C), thus

suggesting that the major NF-kB band in MCL cells

consisted of p50 and p65 subunits. Neither pre-immune

serum nor the irrelevant antibody as anti-cyclin D1 had any

effect. Excess unlabeled NF-kB (100-fold), but not the

mutated oligonucleotides, caused the band to disappear

completely.

3.2. MCL cell lines express constitutive active IkB

kinase

We next examined whether IKK was constitutive active

in the MCL cell lines. IKK has been implicated in the

phosphorylation of IkBa and of p65, and is required for the

activation of NF-kB. The results demonstrate that IKK was

constitutive active in all the four MCL cell lines examined

(Fig. 1D). Whether IkBa and p65 were constitutively

phosphorylated was also examined. It was found that all

the four MCL cell lines examined had constitutively

phosphorylated IkBa (Fig. 1E) and p65 (Fig. 1F).

3.3. MCL cell lines express NF-kB regulated gene

products

As NF-kB is known to regulate the expression of a

number of genes involved in cell survival, we examined

the expression of IkBa, Bcl-2, Bcl-xL, COX2 and cyclin

D1 in all the four MCL cell lines. As shown in Fig. 1G, all

of these gene products were expressed constitutively in

MCL cells. The expression of IL-6, RANK, and RANKL,

all regulated by NF-kB, was also examined. All 4 MCL

cell lines expressed the mRNA for IL-6; however, IL-6

was very low in SP-53 and Mino cell lines. RANK mRNA

was expressed in SP 53 and Granta 519 cells, whereas

RANKL was expressed only in Granta 519 cell lines

(Fig. 1H).

3.4. Curcumin inhibits constitutive NF-kB activity

We next examined the effect of curcumin on constitutive

NF-kB activation in MCL cell lines. To determine the dose

of curcumin required for complete suppression of NF-kB,
BCP 8647 1–14
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Fig. 1. NF-kB and cyclin D1 is constitutively active in MCL. Two million cells/ml were tested (A) for cyclin D1 by Western blot and (B) for nuclear NF-kB by

EMSA. Untreated and TNF-treated KBM-5 cells and multiple myeloma (U266) cells were used as a negative and positive control. (C) The binding of NF-kB to

the DNA is specific and consists of p50 and p65 subunits. Nuclear extracts were prepared from SP-53 cells (2 � 106 ml�1), incubated for 30 min with different

antibodies or unlabeled NF-kB oligonucleotide probe, and then assayed for NF-kB by EMSA. NF-kB-regulated genes are overexpressed in MCL. Two million

cells/ml were tested (D) for IKK by immunecomplex kinase assay, (E) for phosphorylated IkBa by Western blot, (F) for phosphorylated p65 by Western blot,

(G) for IkBa, Bcl-2, Bcl-XL and COX2 by Western blot, and (H) for IL-6, RANK and RANKL by RT-PCR. b-actin was used as a loading control.
N
C

O
Rall the MCL cell lines were treated with various concen-

trations of curcumin for 3 h and then examined for NF-kB

by EMSA. A dose of 50 mM curcumin was sufficient to

fully suppress the constitutive NF-kB activation in SP-53,

Jeko-1 and Mino MCLs, and 100 mM was sufficient in the

Granta 519 cell line (Fig. 2A). An EMSA examination of

the kinetics of curcumin-induced NF-kB downregulation

showed that downregulation was complete at less than 4 h

in SP-53 and in less than 2 h in Jeko-1 and Mino cells,

whereas it took 8 h to downregulate NF-kB in Granta 519

cells (Fig. 2B).
 U
3.5. Curcumin inhibits the phosphorylation of IkBa

and IkB kinase activity

As all the four MCL cell lines demonstrated constitu-

tively phosphorylated IkBa, so we next determined

whether curcumin affected phosphorylation of IkBa

[31]. It was found that curcumin inhibited the phosphor-

ylation of IkBa in SP-53 cells (Fig. 3A). Because IKK is

implicated for the phosphorylation of IkBa [31], we

performed an in vitro kinase assay of immunoprecipitated

IKK from treated and untreated SP-53 cells. Curcumin
BCP 8647 1–14
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Fig. 2. Curcumin inhibits constitutive nuclear NF-kB in MCL. (A) Dose responses of NF-kB to curcumin treatment in MCL cells. Two million cells/ml were

treated with the indicated concentration of curcumin for 3 h and tested for nuclear NF-kB by EMSA as described in Section 2. (B) Time course of curcumin-

induced NF-kB suppression in MCL cells. Cells were treated with curcumin (50 mM) for the indicated times and tested for nuclear NF-kB by EMSA as

described in Section 2.
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inhibited the constitutive IKK activity in a time-depen-

dent manner with complete inhibition occurring at 2 h

(Fig. 3B; upper panel). Immunoblot analysis of the cell

extracts of untreated and curcumin-treated cells showed

no significant difference in the protein levels of the IKK

subunits, IKKa and IKKb (Fig. 3B; middle and lower

panel).

Akt has been linked to the activation of IKK and NF-kB

activation [32]. Whether curcumin inhibits IKK activation

through inhibition of Akt activation was examined. We

found that Akt was constitutively active in MCL cells and

curcumin inhibited the Akt activation in a time-dependent

manner (Fig. 3C).

3.6. Curcumin inhibits phosphorylation and nuclear

translocation of p65

Because p65 was constitutively phosphorylated in all the

four MCL cell lines, we also examined the effect of

curcumin treatment on the phosphorylation of p65. Results

in Fig. 3D showed that curcumin suppressed p65 phos-

phorylation in a time-dependent manner.

The effect of curcumin on the nuclear-retention of p65

was also examined independently by immunocytochem-

istry in curcumin-treated and untreated SP-53 MCL cells.

The results demonstrate that curcumin prevented the

nuclear-retention of p65 in SP-53 cell lines (Fig. 3E).

These results were consistent with the curcumin-induced

NF-kB inhibition observed by EMSA.
U
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 P3.7. Curcumin downregulates the expression of

NF-kB-regulated gene products

Because IkBa, Bcl-2, Bcl-xL, COX2 and cyclin D1 have

all been shown to be overexpressed in MCL, we examined

the effect of curcumin on the expression of these gene

products by Western blotting. The treatment of SP-53

MCL cells with curcumin downregulated the expression

of all these proteins in a time-dependent manner. IkBa,

Cyclin D1 and Bcl-XL required 8 h of curcumin treatment

for their suppression, whereas Bcl-2 was suppressed at 4 h.

The suppression of COX2 by curcumin started as early as 8 h

and was completely suppressed at 24 h (Fig. 3F). NF-kB

upregulates the expression of a number of genes implicated

in facilitating tumor cell survival, including cIAP1, xIAP,

TRAF1, survivin. We found that all these proteins were

constitutively expressed in MCL cells and curcumin down-

regulated the expression of all these proteins (Fig. 3G).

Because interleukin-6 (IL-6), RANK, and RANKL are

also overexpressed in MCL, we also examined the effect of

curcumin on their mRNA expression by RT-PCR. As shown

in Fig. 1H, all four MCL cell lines expressed the mRNA for

IL-6; however, IL-6 was very low in SP-53 and Mino cell

lines. RANK mRNAwas expressed in SP 53 and Granta 519

cells, whereas RANKL was expressed only in Granta 519

cell lines. Because Granta 519 cells expressed IL-6, RANK

and RANKL mRNA, we examined the effect of curcumin

on their expression in Granta 519 cells. Curcumin treatment

inhibited the expression of all cytokines (Fig. 3H).
BCP 8647 1–14



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

S. Shishodia et al. / Biochemical Pharmacology xxx (2005) xxx–xxx 7

DTD 5

BCP 8647 1–14

Fig. 3. Curcumin inhibits IkBa phosphorylation, IkB kinase, p65-phosphorylation, and induces redistribution of p65. (A) Two million SP-53 MCL cells were

treated with curcumin (50 mM) for indicated times, and cytoplasmic extracts were prepared and examined for the level of phosphorylated IkBa by Western

blotting. (B) Five million SP-53 MCL cells were treated with curcumin (50 mM) for indicated times, and whole-cell extracts were prepared and

immunoprecipitated with IKK antibodies and examined by the immunecomplex kinase assay for IKK activity (upper panel) or by Western blotting for

total IKKa and IKKb proteins (middle and lower panel). (C) Two million SP-53 MCL cells were treated with curcumin (50 mM) for indicated times, and whole-

cell extracts were prepared and examined for the level of phosphorylated Akt by Western blotting. (D) Two million SP-53 MCL cells were treated with curcumin

(50 mM) for indicated times, and cytoplasmic extracts were prepared and examined for the level of phosphorylated p65 by Western blotting. (E) SP-53 cells were

incubated with or without curcumin (50 mM) for 3 h and then analyzed for the distribution of p65 by immunocytochemistry. Red stain indicates the localization

of p65, and blue stain indicates the nucleus (magnification, 200�). Curcumin inhibits NF-kB-regulated gene products. (F) Two million SP-53 cells were treated

with curcumin (50 mM) for indicated times, and cytoplasmic extracts were prepared. Sixty micrograms of cytoplasmic extracts were resolved on 10% SDS-

PAGE gel, electrotransferred onto a nitrocellulose membrane, and probed for IkBa; Bcl-2, Bcl-xL, cyclin D1, and COX2. The same blots were stripped and

reprobed with anti-b-actin antibody to show equal protein loading (lower panel in each figure). (G) Two million SP-53 cells were treated with curcumin (50 mM)

for indicated times, and whole-cell extracts were prepared. Fifty micrograms of cytoplasmic extracts were resolved on 10% SDS-PAGE gel, electrotransferred

onto a nitrocellulose membrane, and probed for xIAP, cIAP, TRAF1 and survivin. Same blots were stripped and reprobed with anti-b-actin antibody to show

equal protein loading (lower panel in each figure). (H) Five million Granta 519 cells were treated with curcumin (50 mM) for 3 h, and total mRNAwas extracted

and examined for expression of IL-6, RANK, and RANKL mRNA by RT-PCR. b-actin mRNA was used as an internal control to show equal RNA loading.
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3.8. Curcumin suppresses the proliferation of MCL

cells and arrested the cells at the G1/S phase of

the cell cycle

Because NF-kB has been implicated in cell survival and

proliferation [15,16], we examined the effect of curcumin

on proliferation of MCL cell lines by the MTT method.

Curcumin at a concentration as low as 1 mM inhibited

growth of SP-53, Jeko-1, Mino and Granta 519 (Fig. 4A–
U
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Fig. 4. Curcumin inhibits proliferation in MCL cells. (A) SP-53; (B) JeKo-1; (C)

curcumin (1 and 10 mM) for indicated time duration, and the viable cells were as

triplicate cultures. (E, F) SP-53 cells (5000/0.1 ml) were incubated at 37 8C with c

using MTT method. The results are shown as the mean � S.D. of triplicates. (G) Cu

cells (2 � 106 cells/ml) were incubated in the absence or in presence of different d

with propidium iodide, and analyzed for DNA content by flow cytometry as des
D). At 10 mM, curcumin completely suppressed the growth

in all cell lines.

How soon after NF-kB suppression follows antiproli-

ferative effects of curcumin, was further investigated. We

found that 50 mM curcumin-induced approximately 30%

cytotoxicity within 8 h and about 60% cytotoxicity at 24 h

(Fig. 4E and F). Because D-type cyclins are required for the

progression of cells from the G1 phase of the cell cycle to

S phase (DNA synthesis) [33] and we observed a rapid
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Mino; or (D) Granta 519 (5000 cells/0.1 ml) were incubated at 37 8C with

sayed using MTT reagent. The results are shown as the mean � S.D. from

urcumin (25 and 50 mM) for 8 and 24 h, and then cell viability determined

rcumin arrests the cells at G1/S phase of the cell cycle. Serum-starved SP-53

oses of curcumin for 36 h. Thereafter, the cells were washed, fixed, stained

cribed in Section 2.
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decline of cyclin D1 in curcumin-treated MCL cells, we

wished to determine the effect of curcumin on SP-53 cell

cycle. Flow cytometric analysis of the DNA from curcu-

min-treated cells showed a significant increase in the

percentage of cells in the G1 phase, from 57 to 79%,

and a decrease in the percentage of cells in the S phase,

from 39 to 5%, within 36 h of curcumin (25 mM) treatment

(Fig. 4G). These results clearly show that curcumin

induces G1/S arrest of the cells.

3.9. Curcumin-induced apoptosis in MCL cells

Whether suppression of NF-kB in MCL cells also leads

to apoptosis was investigated by determining the activation

of caspases. SP-53 cells were treated with curcumin for

different times, and the whole-cell extracts were prepared

and analyzed by Western blotting for activation of casp-

ase-9, caspase-7, and cleavage of PARP [34]. The results

showed a time-dependent activation of caspase-9 (Fig. 5A),

as indicated by the disappearance of the 47 kDa band and

the appearance of a 37 kDa band. Similarily, the Western

blot analysis also showed an activation of caspase-7

(Fig. 5B), as indicated by the disappearance of the

35 kDa band and the appearance of a 20 kDa band. Further-
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Fig. 5. Curcumin-induced apoptosis of MCL cells is mediated through caspase ac

presence of curcumin (50 mM) for indicated times. The cells were washed and total

resolved on 10% SDS-PAGE gel, electrotransferred to a nitrocellulose membrane,

and (D) anti-PARP antibodies as described in Section 2. (E) Flow cytometric

concentrations of curcumin. SP-53 cells were incubated alone or with indicated con

stained with annexin V-FITC.
O
O

F

more, curcumin also induced the activation of caspase-3

(Fig. 5C). Activation of downstream caspases led to the

cleavage of a 118 kDa PARP protein into an 89 kDa frag-

ment (Fig. 5D), whereas untreated cells did not show any

PARP cleavage. These results clearly suggest that curcu-

min-induced apoptosis in MCL cells.

Curcumin-induced apoptosis in MCL cells was also

confirmed independently by the annexin V method.

Annexin V binds to those cells that express phosphatidyl-

serine on the outer layer of the cell membrane, a char-

acteristic of cells entering apoptosis. This allows live cells

(unstained with either fluorochrome) to be discriminated

from apoptotic cells (stained only with annexin V) [31].

SP-53 cells were treated for 24 h with different concentra-

tions of curcumin and then stained with annexin V-FITC.

Results in Fig. 5E show a dose-dependent increase in cells

positive for annexin V, indicating the onset of apoptosis in

curcumin-treated cells.

3.10. Suppression of constitutive NF-kB activation is

linked to the inhibition of proliferation of MCL cells

Curcumin suppresses NF-kB and suppresses prolifera-

tion of MCL cells. To determine whether suppression of
TE
D

 P
R
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tivation. SP-53 cells (2 � 106 cells/ml) were incubated in the absence or in

proteins were extracted by lysing the cells. Sixty micrograms of extracts was

and probed with (A) anti-caspase-9, (B) anti-caspase-7, (C) anti-caspase-3,

analysis of annexin V-FITC stained cells after treatment with different

centrations of curcumin for 24 h; thereafter either cells were left unstained or
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proliferation of MCL is linked to the suppression of NF-

kB, we used two distinct and specific NF-kB blockers. We

used NBD-peptide that has been shown to block the

interaction between NEMO and IKKa and IKKb [26].

For cell-permeabilization, the NBD-peptide was conju-

gated to a small sequence from the antennapedia home-

odomain. We also used a PTD-p65-P1 peptide that is

derived from the p65 subunit of NF-kB amino acid residues

271–282 that has been shown to be a specific inhibitor of

NF-kB activation [35]. This peptide also required linking
U
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Fig. 6. NEMO-binding domain (NBD) peptide inhibits constitutive NF-kB and i

treated with indicated concentrations of NEMO-control or NBD-peptide (100 mM

kB DNA-binding activity by EMSA. (B) SP-53 cells (5 � 103 cells/0.1 ml) were

(100 mM) for indicated time periods, and then cell viability was monitored by the t

NF-kB activation and inhibits the proliferation of MCL cells. (C) SP-53 cells (2 �
domain (PTD, 150 mM) or PTD-p65-P1 peptide (150 mM) for 4 h. Nuclear extracts

(D) SP-53 cells (5 � 103 cells/0.1 ml) were treated with above indicated concentra

examined by live-dead assay. (E) SP-53 cells (5 � 103 cells/0.1 ml) were treated w

viability was monitored by the trypan blue dye exclusion method.
with a PTD derived from the third helix sequence of

antennapedia. These peptides specifically suppress NF-

kB activation. The peptide without the antennapedia home-

odomain protein sequence and the PTD sequence alone

were used as a control.

Treatment of SP-53 cells with NEMO-control peptide

had no effect on the constitutive NF-kB activation, but

NBD-peptide suppressed the constitutive NF-kB in a time-

dependent manner, with complete suppression occurring at

4 h (Fig. 6A). Suppression of NF-kB by NBD-peptide also
TE
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nduces cytotoxicity in MCL cells. (A) SP-53 cells (2 � 106 cells/ml) were

) for indicated times. Nuclear extracts were checked for the presence of NF-

treated with indicated concentrations of NEMO-control or NBD-peptide

rypan blue dye exclusion method. PTD-p65-P1 peptide inhibits constitutive

106 ml�1) were treated with p65-P1 peptide (150 mM), protein transduction

were examined for the presence of NF-kB DNA-binding activity by EMSA.

tions of p65-P1, PTD or PTD-p65-P1 for 12 h and then the cell viability was

ith 150 mM each p65-P1, PTD or PTD-p65-P1 for 12 and 24 h and then cell
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led to inhibition of proliferation of SP-53 cells. Approxi-

mately 34% suppression of cell growth was observed after

NBD treatment for 24 h (Fig. 6B). Similarly, PTD-P65-P1

inhibitory peptide but not the control peptides alone

inhibited the constitutive NF-kB activity (Fig. 6C). Inhibi-

tion of NF-kB by PTD-P65-P1 led to about 40% inhibition

of proliferation in 12 h and 60% in 24 h (Fig. 6D and E).

These results thus suggest that the suppression of NF-kB is

linked to the antiproliferative effects of curcumin.

3.11. MCL cell lines express TNF and curcumin

inhibits the TNF expression

Among the cytokines, TNF and RANKL are the most

potent activator of NF-kB. Whether constitutive activation

of NF-kB in MCL cells is due to autocrine expression of

TNF was examined. The level of TNF mRNA expression in

MCL cell lines was examined by RT-PCR. The results

showed that all the four MCL cell lines constitutively

expressed TNF mRNA (Fig. 7A). We next examined the
U
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Fig. 7. TNF is an autocrine growh factor for MCL. (A) MCL express TNF mRNA.

loading control. (B) Curcumin inhibits expression of TNF mRNA. Five million Gra

by RT-PCR. (C) Curcumin inhibits expression of TNF protein. Two million SP-53 c

for TNF by Western blot. (D) Anti-TNF antibody inhibits constitutive NF-kB activ

ml) for indicated times, then nuclear extract was prepared and examined for NF-k

(5000/0.1 ml) were incubated at 37 8C with anti-TNF antibody (50 ng/ml) for in

thymidine incorporation. The results are shown as the mean � S.D. of triplicates
F

effect of curcumin on the expression of TNF mRNA and

TNF protein expression in MCL cells. We found that

curcumin inhibited the expression of both TNF mRNA

(Fig. 7B) and TNF protein (Fig. 7C) in a time-dependent

manner.

3.12. Suppression of TNF leads to inhibition of NF-kB

activation and proliferation of MCL

To determine whether the constitutively active NF-kB in

MCL is due to expression of TNF, cells were treated with

anti-TNF antibody and the NF-kB expression was exam-

ined. We found that neutralization of TNF led to the

suppression of constitutively active NF-kB (Fig. 7D), thus

suggesting that TNF plays a major role in activation of NF-

kB in MCL.

To determine whether the proliferation of MCL is due to

expression of TNF, cells were treated with anti-TNF anti-

body and the proliferation was examined by thymidine

incorporation. We found that neutralization of TNF led to
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Two million cells/ml were tested for TNF by RT-PCR. b-actin was used as a

nta 519 cells were treated with curcumin (50 mM) for 3 h, and tested for TNF

ells were treated with curcumin (50 mM) for indicated time points, and tested

ation. Two million SP-53 cells were treated with anti-TNF antibody (50 ng/

B. (E) Anti-TNF antibody inhibits proliferation of MCL cells. SP-53 cells

dicated time points, and then cell proliferation was determined using 3H-

.
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the inhibition of proliferation of cells (Fig. 7E), thus

suggesting the role of TNF-induced NF-kB activation in

proliferation of MCL cells.
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4. Discussion

In this study, we examined the effect of curcumin on the

constitutive NF-kB activation in MCL cells. Our results

show that NF-kB is constitutively expressed in all the four

MCL cell lines that we examined. All these cells showed

constitutive activation of IKK, constitutive phosphoryla-

tion of p65, and IkBa and overexpression of mRNAs for

TNF, IL-6, RANK and RANKL. MCL cells also over-

expressed IkBa, Bcl-2, Bcl-XL and COX2 that are known

to be regulated by NF-kB. Treatment of MCL cells with

curcumin downregulated the constitutively active NF-kB

and IKK, inhibited the phosphorylation of IkBa and p65;

suppressed the expression of IkBa, Bcl-2, Bcl-xL, cIAP-1,

xIAP, TRAF-1, survivin, cyclin D1, TNF, IL-6, and COX2;

and this led to the induction G1/S arrest, suppression of

proliferation and induction of apoptosis in MCL cells.

Treatment of MCL cells with anti-TNF antibody also

downregulated the constitutively active NF-kB and pro-

liferation of MCL cells.

Our finding that NF-kB was constitutively active in all

four MCL cell lines (SP-53, Jeko-1, Mino and Granta-519),

is in agreement with another recent report [36]. Why NF-

kB is constitutively active in MCL, however, has not been

reported. We found for the first time that all the MCL cell

lines expressed mRNA for TNF, the most potent inducers

of NF-kB activation. Curcumin inhibited the expression of

both TNF mRNA and the TNF protein in MCL. We also

found that neutralization of TNF secretion by an anti-TNF

antibody led to the suppression of NF-kB in MCL.

Our results indicate that NF-kB is responsible for pro-

liferation of cells, as suppression of NF-kB either by

curcumin, NF-kB specific peptide or by anti-TNF-anti-

body, suppressed the proliferation of cells. Our results also

suggest that TNF is an autocrine growth factor or MCL.

The molecular signature of mantle cell lymphoma reveals

multiple signals favoring cell survival [14]. TNF has been

described to be abnormally increased in patients affected

by malignant lymphomas, particularly non-Hodgkins lym-

phoma (NHL) [37].

IKK, the kinase required for NF-kB activation [28] is

constitutively phosphorylated in MCL. We found that

curcumin treatment abrogated the constitutive NF-kB

activation through the inhibition of IKK. Inhibition of

IKK resulted in the suppression of constitutive phosphor-

ylation of IkBa and p65. Our results are in agreement with

earlier reports where curcumin has been shown to suppress

NF-kB activation in colon cancer cells, macrophages and

multiple myeloma cells through the suppression of IKK

[26,38,39]. Akt, NIK, mitogen-activated protein kinase

kinase kinase 1, and atypical protein kinase C have also
U
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been linked to IKK [40]. Our study shows that MCL

expressed constitutive active Akt and curcumin inhibits

the Akt activation. Suppression of Akt activation could

lead to inhibition of IKK activation. Akt has been described

as a cell survival kinase [41], and inhibition of this kinase

could also mediate the suppression of proliferation of

MCL.

We found that the NF-kB-regulated genes, Bcl-2, Bcl-

XL, cIAP-1, xIAP, TRAF-1, survivin, COX2 and cyclin D1

[15,42,43] were overexpressed in MCL cell lines and

suppression of NF-kB by curcumin inhibited the expres-

sion of these genes. The deregulation of Bcl-2 and Bcl-XL

results in increased resistance to cell death. A previous

report implicated the activation of NF-kB in the deregu-

lated overexpression of Bcl-2 in follicular lymphoma [44].

In our study curcumin downregulated Bcl-2 and Bcl-xL

[45] expression, the proteins that have been implicated in

the survival of MCL cells [13,46]. Curcumin suppressed

the protein expression of IkBa that is an NF-kB-regulated

gene. As IkBa is required to keep NF-kB in a resting stage,

therefore, it is expected that this could lead to further

activation of NF-kB. Interestingly, however, curcumin

suppressed the activation of NF-kB.

To determine whether induction of apoptosis of MCL is

linked to the suppression of NF-kB, we used two distinct

and specific NF-kB blockers, viz; NBD-peptide that inhi-

bits IKK activation [26], and a PTD-p65-P1 peptide that

inhibits binding of p65 to the DNA [35]. Both approaches

suggest that the suppression of NF-kB is linked to the

cytotoxic effects of curcumin. The cytotoxic effects of

curcumin in MCL cells is in agreement with previous

report that curcumin-induced suppression of NF-kB leads

to inhibition of cellular proliferation of cutaneous T-cell

lymphoma [47] and acute myelogenous leukemia [48].

Cyclin D1, another NF-kB-regulated gene, is overex-

pressed in MCL as a result of a t(11;14) chromosomal

translocation. We found that the expression of cyclin D1 is

also downregulated by curcumin. Cyclin D1 plays a role in

cell proliferation through activation of cyclin-dependent

kinases. In the present report we show that inhibition of

proliferation of MCL correlated with the down-regulation

of the expression of cyclin D1 protein. An earlier report

from our laboratory has shown that curcumin blocks the

proliferation of various prostate, breast and squamous cell

carcinoma cell lines by down-regulating the expression of

cyclin D1 protein [49]. The suppression of cyclin D1 by

curcumin resulted in the cell cycle arrest at G1/S phase

because cyclin D1 is needed for cells to advance from the

G1 to S phase of the cell cycle.

Our studies show that TNF, IL-6, RANK, and RANKL

mRNAwere constitutively expressed in MCL. Although all

these cytokines are known to be regulated by NF-kB, TNF

and RANKL are potent activators of NF-kB. These cyto-

kines are produced in NHL and cooperate in vivo to

increase NHL cell proliferation [50]. IL-6 has been shown

to play a role in the clinical aggressiveness of human NHL
BCP 8647 1–14
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by stimulating the expression of matrix metalloproteinases

[51]. Overexpression of RANKL, which correlated with

bone resorption was observed in multiple myeloma [52,53]

and adult T-cell leukemia [54]. We found that curcumin

inhibited the expression of these cytokines through the

inhibition of NF-kB.

Because NF-kB is known to mediate antiapoptotic

effects [16,55], we examined whether suppression of

NF-kB by curcumin could lead to apoptosis. We found

that curcumin activated caspases 9, 7, and 3 and induced

the cleavage of PARP in MCL. These results are in

agreement with reports indicating that curcumin induces

apoptosis in AML and prostate cancer cells [56,57].

Overall our results show that curcumin can block the

constitutive expression of cytokines that are known to

activate NF-kB, inhibits IKK activation, suppresses the

proliferation of MCL and leads the MCL cells to apoptosis

through the inhibition of NF-kB regulated anti-apoptosis

genes as well as through the activation of caspases. In

addition to these multiple mechanisms by which curcumin

inhibits the growth and proliferation of MCL, it also is a

pharmacologically safe compound with no known side

effects even at doses as high as 8 g per day [58]. Therefore,

the suppression of constitutive NF-kB by curcumin may

prove useful in the treatment of MCL.
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